English | Español

Try our Free Online Math Solver!

Online Math Solver

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

Please use this form if you would like
to have this math solver on your website,
free of charge.


Zeros of Polynomials

In Exercises 1-6, use direct substitution
to show that the given value is a
zero
of the given polynomial.
1. p(x) = x3 − 3x2 − 13x + 15, x = −3
2. p(x) = x3 − 2x2 − 13x − 10, x = −2
3. p(x) = x4 − x3 − 12x2, x = 4
4. p(x) = x4 − 2x3 − 3x2, x = −1
5. p(x) = x4 + x2 − 20, x = −2
6. p(x) = x4 + x3 − 19x2 + 11x + 30,
x = −1

In Exercises 7-28, identify all of the
zeros of the given polynomial without
the
aid of a calculator . Use an algebraic
technique and show all work (factor
when necessary) needed to obtain the
zeros.
7. p(x) = (x − 2)(x + 4)(x − 5)
8. p(x) = (x − 1)(x − 3)(x + 8)
9. p(x) = −2(x − 3)(x + 4)(x − 2)
10. p(x) = −3(x + 1)(x − 1)(x − 8)
11. p(x) = x(x − 3)(2x + 1)
12. p(x) = −3x(x + 5)(3x − 2)
13. p(x) = −2(x + 3)(3x − 5)(2x + 1)
14. p(x) = 3(x − 2)(2x + 5)(3x − 4)
15. p(x) = 3x3 + 5x2 − 12x − 20
16. p(x) = 3x3 + x2 − 12x − 4
17. p(x) = 2x3 + 5x2 − 2x − 5
18. p(x) = 2x3 − 5x2 − 18x + 45
19. p(x) = x4 + 4x3 − 9x2 − 36x
20. p(x) = −x4 + 4x3 + x2 − 4x
21. p(x) = −2x4 − 10x3 + 8x2 + 40x
22. p(x) = 3x4 + 6x3 − 75x2 − 150x
23. p(x) = 2x3 − 7x2 − 15x
24. p(x) = 2x3 − x2 − 10x
25. p(x) = −6x3 + 4x2 + 16x
26. p(x) = 9x3 + 3x2 − 30x
27. p(x) = −2x7 − 10x6 + 8x5 + 40x4
28. p(x) = 6x5 − 21x4 − 45x3

In Exercises 29-34, the graph of a polynomial
is given. Perform each of the following
tasks.

i. Copy the image onto your homework
paper. Label and scale your axes,
then label each x- intercept with its
coordinates.
ii. Identify the zeros of the polynomial.
29.

30.

31.

32.

33.

34.

For each of the polynomials in Exercises 35-
46,
perform each of the following tasks.

i. Factor the polynomial to obtain the
zeros. Show your work.
ii. Set up a coordinate system on graph
paper. Label and scale the horizontal
axis. Use the zeros and end-behavior
to help sketch the graph of the polynomial
without the use of a calculator .
iii. Verify your result with a graphing calculator.
35. p(x) = 5x3 + x2 − 45x − 9
36. p(x) = 4x3 + 3x2 − 64x − 48
37. p(x) = 4x3 − 12x2 − 9x + 27
38. p(x) = x3 + x2 − 16x − 16
39. p(x) = x4 + 2x3 − 25x2 − 50x
40. p(x) = −x4 − 5x3 + 4x2 + 20x
41. p(x) = −3x4 − 9x3 + 3x2 + 9x
42. p(x) = 4x4 − 29x2 + 25
43. p(x) = −x3 − x2 + 20x
44. p(x) = 2x3 − 7x2 − 30x
45. p(x) = 2x3 + 3x2 − 35x
46. p(x) = −2x3 − 11x2 + 21x

6.2 Solutions
1. p(−3) = (−3)3 − 3(−3)2 − 13(−3) + 15 = −27 − 27 + 39 + 15 = 0
3. p(4) = 44 − 43 − 12(4)2 = 256 − 64 − 192 = 0
5. p(−2) = (−2)4 + (−2)2 − 20 = 16 + 4 − 20 = 0
7. Set p(x) = 0 in p(x) = (x − 2)(x + 4)(x − 5),
0 = (x − 2)(x + 4)(x − 5),

then use the zero product property to write
x − 2 = 0 or x + 4 = 0 or x − 5 = 0.

Solving , the zeros are x = 2, −4, and 5.

9. Set p(x) = 0 in p(x) = −2(x − 3)(x + 4)(x − 2),
0 = −2(x − 3)(x + 4)(x − 2),

then use the zero product property to write
x − 3 = 0 or x + 4 = 0 or x − 2 = 0.

Solving, the zeros are x = 3, −4, and 2.

11. Set p(x) = 0 in p(x) = x(x − 3)(2x + 1),
0 = x(x − 3)(2x + 1),

then use the zero product property to write
x = 0 or x − 3 = 0 or 2x + 1 = 0.

Solving, the zeros are x = 0, 3, and −1/2.

13. Set p(x) = 0 in p(x) = −2(x + 3)(3x − 5)(2x + 1),
0 = −2(x + 3)(3x − 5)(2x + 1),

then use the zero product property to write
x + 3 = 0 or 3x − 5 = 0 or 2x + 1 = 0.

Solving, the zeros are x = −3, 5/3, and −1/2.

15. Factor p(x) = 3x3 + 5x2 − 12x − 20 by grouping, then finish the factoring using
the difference of squares pattern.
p(x) = 3x3 + 5x2 − 12x − 20
p(x) = x2(3x + 5) − 4(3x + 5)
p(x) = (x2 − 4)(3x + 5)
p(x) = (x + 2)(x − 2)(3x + 5)

To find the zeros, set p(x) = 0,
0 = (x + 2)(x − 2)(3x + 5),

then use the zero product property to write
x + 2 = 0 or x − 2 = 0 or 3x + 5 = 0.

Solving, the zeros are x = −2, 2, or −5/3.

17. Factor p(x) = 2x3 +5x2 −2x−5 by grouping, then finish the factoring using the
difference of squares pattern .
p(x) = 2x3 + 5x2 − 2x − 5
p(x) = x2(2x + 5) − 1(2x + 5)
p(x) = (x2 − 1)(2x + 5)
p(x) = (x + 1)(x − 1)(2x + 5)

To find the zeros, set p(x) = 0,
0 = (x + 1)(x − 1)(2x + 5),

then use the zero product property to write
x + 1 = 0 or x − 1 = 0 or 2x + 5 = 0.

Solving, the zeros are x = −1, 1, or −5/2.

19. Start with p(x) = x4 + 4x3 − 9x2 − 36x. Factor out the gcf (x in this case), then
factor by grouping . In the last step, use the difference of squares pattern to complete
the factorization.
p(x) = x[x3 + 4x2 − 9x − 36]
p(x) = x[x2(x + 4) − 9(x + 4)]
p(x) = x(x2 − 9)(x + 4)
p(x) = x(x + 3)(x − 3)(x + 4)

Set
0 = x(x + 3)(x − 3)(x + 4)

and use the zero product property to write
x = 0 or x + 3 = 0 or x − 3 = 0 or x + 4 = 0.

Solving, the zeros are x = 0, −3, 3, and −4.

21. Start with p(x) = −2x4 − 10x3 + 8x2 + 40x. Factor out the gcf (−2x in this
case), then factor by grouping. In the last step , use the difference of squares pattern
to complete the factorization.
p(x) = −2x[x3 + 5x2 − 4x − 20]
p(x) = −2x[x2(x + 5) − 4(x + 5)]
p(x) = −2x(x2 − 4)(x + 5)
p(x) = −2x(x + 2)(x − 2)(x + 5)

Set
0 = −2x(x + 2)(x − 2)(x + 5)

and use the zero product property to write
−2x = 0 or x + 2 = 0 or x − 2 = 0 or x + 5 = 0.

Solving, the zeros are x = 0, −2, 2, and −5.

23. Start with p(x) = 2x3 − 7x2 − 15x. Factor out the gcf (x in this case), then use
the ac- method to complete the factorization.
p(x) = x[2x2 − 7x − 15]
p(x) = x[2x2 − 10x + 3x − 15]
p(x) = x[2x(x − 5) + 3(x − 5)]
p(x) = x(2x + 3)(x − 5)

Set
0 = x(2x + 3)(x − 5)

and use the zero product property to write
x = 0 or 2x + 3 = 0 or x − 5 = 0.

Solving, the zeros are x = 0, −3/2, and 5.

Prev Next