English | Español

# Try our Free Online Math Solver!

Online Math Solver

 Depdendent Variable

 Number of equations to solve: 23456789
 Equ. #1:
 Equ. #2:

 Equ. #3:

 Equ. #4:

 Equ. #5:

 Equ. #6:

 Equ. #7:

 Equ. #8:

 Equ. #9:

 Solve for:

 Dependent Variable

 Number of inequalities to solve: 23456789
 Ineq. #1:
 Ineq. #2:

 Ineq. #3:

 Ineq. #4:

 Ineq. #5:

 Ineq. #6:

 Ineq. #7:

 Ineq. #8:

 Ineq. #9:

 Solve for:

 Please use this form if you would like to have this math solver on your website, free of charge. Name: Email: Your Website: Msg:

# Math 2200 Quiz 1 Solutions

Problem 1. (15 points) Show carefully that the compound proposition

is a tautology.

Proof. We use the laws of propositional logic (also a table of truth values would work).

We used the resolution of the implication, one of deMorgan laws, the double
negation, associativity, and

Problem 2. (15 points) Is the following argument valid? (Carefully
express it in propositional logic, and show the rules of inference used at
each step .)

“You can score well in the GRE only if you have good analytical skills.
Every student who takes Discrete Math has good analytical skills or good
memory. Maggie doesn’t have good memory. Therefore, if Maggie takes
Discrete Math , then Maggie will score well in the GRE.”

Proof. Define the following propositional functions, where the domain of the
variable x is “all students”:

• P(x) = x scores well in the GRE;
• Q(x) = x has good analytical skills;
• R(x) = x takes Discrete Math;
• S(x) = x has good memory.

Then the premises of the argument are:

and the conclusion is

(d) R(Maggie) → P(Maggie).

We can use instantiation for (a) and (b) to get

(a’) P(Maggie) → Q(Maggie);
(b’) R(Maggie) → Q(Maggie) ∨ S(Maggie).

From (b’) and (c), we get

(b”) R(Maggie) → Q(Maggie).
But (a) and (b”) do not imply the conclusion (d). The argument is invalid.

Problem 3. (17 points)

(a) Express the following sentence using quantifiers (and logical propositions ):
“There is a student in this class who has taken some course in every
department in the school of science.”

You should use the variables: s student, c course, d department, and these
should be the only variables. Give the domain of each variable.

(b) Find the logical negation of the quantifier expression that you obtained
in (a).

n (a).
(c) Translate the negation you obtained in (b) into an English sentence.

 Proof. (a) Variable Domain s student this class c course all courses d department departments in the school of science

We define the propositional function:
P(s, c, d) = s took course c in department d.
Then the sentence can be written as

(b) The negation is

(c) In English: “Every student in this class has not taken any course in
some department in the school of science.”

Problem 4. (18 points)

(a) List the elements of the set

(b) For every integer i ≥ 1, setFind

Proof. (a) If (x+1)(2−x) ≥ 0, then −1 ≤ x ≤ 2. Since x is also an integer,
we have S = {−1, 0, 1, 2}.

since every nonnegative integer is in every Ai, and if n is a
negative integer , then

since A1 is a subset of every Ai.

Problem 5. (18 points)

(a) Is the function , given by f(x) = 3x^2 + 2 one-to-one?
What is its image(range)

(b) Consider g :What is the preimage
Proof. (a) f is one-to-one (note that the domain is positive numbers ). To see
this, prove the contrapositive:
and since x1 > 0, x2 > 0, this is equivalent to x1 = x2

For the image, set y = 3x^2 + 2, thenThe image
is the interval (2,∞). (In particular, f is not onto.)

(b) Recall thatfor every real number y. Then
−1, if and only ifor, equivalently

Similarlyif and only if

Therefore, the preimage

Problem 6. (17 points) Prove the following statements:

(a) For every x > 0, if x is irrational, then is irrational.
(b) Between any two distinct rational numbers , there exist infinitely many
rational numbers .

Proof. (a) (proof by contrapositive) If is rational, then x is rational.
Write = m/n , for some integers m, n, n ≠ 0. Then by squaring both sides,
. Since n ≠ 0, then n^2 ≠ 0, moreover, both m^2, n^2 are integers, since
m, n are. This proves that x is rational.

(b) (proof by contradiction) Assume that there exist two rational numbers
a, b, a < b, such that between a and b there are only finitely many rational numbers.
Then there must be a rational number closest to a among
them, call it r. We have a < r and no rational numbers between a and r.
ConsiderThis is a rational number, andThis gives the